Regional variations in volatile composition: Isotopic evidence for carbonate recycling in the Central American volcanic arc
نویسندگان
چکیده
[1] Abstract: Gas data were collected from geothermal production fields, fumaroles, and hot springs in Central America in order to investigate the relation between volatile output and spatial distribution of volcanic systems. The He/He ratios are 6.5 ± 0.7 Ra throughout the region, indicating that helium is predominantly of mantle origin and is largely independent of variations in the characteristics of the arc. Lower ratios produced by radiogenic production within the Chortis Block are restricted to the Berlı́n geothermal field and the region behind the volcanic front. Ratios of CO2/ He are inversely related to the distance between the volcanic system and the trench. In the southwestern portion of the arc, where the arc-trench gap is short and the subduction angle is shallow (Miravalles, Costa Rica), decarbonation is enhanced relative to the mantle helium flux resulting in higher CO2/ He. In the northwest, where the gap is greater and the subduction angle steeper (Ahuachapán, El Salvador), decarbonation decreases relative to the helium flux. While variations in the carbon isotopic signature have traditionally been linked to the composition of the subducted sediments, the Central American data provide evidence that other factors within the convergent plate boundary such as arc-trench gap, crustal thickness, and subduction angle play an important role in controlling the flux of CO2 from the subducting slab. The Central American Volcanic Arc gases show no apparent contribution of carbon dioxide derived from subducted organic sediments. Shallow crustal processes, including partitioning and isotopic fractionation, account for the minor deviations from direct mixing of mantle and carbonate-derived end-members. Given that the Central American arc system is not unique in terms of the composition of the subducted sediments or the volcanic output, previous interpretations of global volcanic flux in terms of carbonate and sediment output should be reconsidered. Carbon-helium relationships in Central America require that only 0.3–3.3% of the subducted carbon is released in volcanic eruptions, while the rest is presumably reintroduced into the deeper mantle. This is generally an order of magnitude lower than global averages and is limited by the availability flux of mineral-bound water and the temperature of release. The dC and CO2/ He ratios suggest that even though the amount of carbon that is released from the slab and subducted sediments is relatively low in Central America, it still makes up 86–98% of the total carbon released from arc volcanics.
منابع مشابه
A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua
The Central American volcanic arc supplies a significant proportion of the persistent annual global sulphur dioxide emissions from volcanoes. In November/December 2003, we completed a survey of the arc section from Mombacho to San Cristóbal in Nicaragua recording individual mean fluxes of 800, 530 and 220 Mg day 1 in the plumes from San Cristóbal, Telica and Masaya, respectively. An assessment ...
متن کاملThe chemical composition of subducting sediment and its consequences for the crust and mantle
Subducted sediments play an important role in arc magmatism and crust–mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemica...
متن کاملIsotopic analysis of mineral phases to unravel the origin of altered volcanic rocks: an example from the Leucite Hills lamproites
Study of lamproites from Leucite Hills, Wyoming, indicates that the isotopic compositions of some specimens have been modified due to the alteration and/or the presence of secondary carbonate impurities within the whole rocks. Leachate test shows that while phlogopite lamproites are not affected by secondary processes, the transitional madupitic lamproites from Middle Table Mountain and on...
متن کاملGeochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran
Three intrusive granitoid bodies from northwest Saveh, central Iran, are embedded in volcanic sedimentary rocks of the Eocene,forming isolated small outcrops: Khalkhab quartz monzodioritic units (SiO2: ~52-57 wt %) to the northwest, Neshveh granodioriticunits (SiO2: ~62-71 wt %) to the northeast, and Selijerd granodioritic units (SiO2: ~63-69 wt %) to the southeast. The Khalkhab unit iscomposed...
متن کاملPetrogenesis of the Lalezar granitoid intrusions (Kerman Province - Iran)
The Lalezar granitoids crop out within volcanic successions of the Urumieh-Dokhtar Magmatic Assemblage (UDMA). These granitoids have a range from gabbro-diorites to granites in composition. The mineral compositions of the most felsic rocks are characterized by the abundances of Na-plagioclase, quartz, alkali feldspar, biotite and hornblende. In the gabbro-diorite rocks, plagioclase (Ca-rich), h...
متن کامل